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Abstract

This paper presents a new approach to the direct numerical simulation of particle flows. The basic idea is to use a

local analytic representation valid near the particle to ‘‘transfer’’ the no-slip condition from the particle surface to the

adjacent grid nodes. In this way the geometric complexity arising from the irregular relation between the particle

boundary and the underlying mesh is avoided and fast solvers can be used. The results suggest that the computational

effort increases very slowly with the number of particles so that the method is efficient for large-scale simulations. The

focus here is on the two-dimensional case (cylindrical particles), but the same procedure, to be developed in forth-

coming papers, applies to three dimensions (spherical particles). Several extensions are briefly discussed.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a recent paper [1] we have presented a new approach, termed PHYSALIS, for the numerical com-

putation of potential flows around spheres. Here, that basic approach is extended to the Navier–Stokes

problem for two-dimensional flow past aligned cylinders, a situation for which some preliminary results

were recently presented in [2]. It will be apparent from the following that the same idea can be further
extended to the three-dimensional viscous flow past spheres, and work in this direction is currently under

way; some early results for the three-dimensional case were presented in [3].

At the root of the PHYSALIS approach is a new way to deal with the geometrical complexity that the

particles introduce in the calculation: because of the boundary conditions on its surface, a particle induces a

specific structure in the neighboring flow which manifests itself in certain non-local relations among the
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flow fields. If this structure is enforced directly, the flow ‘‘becomes aware’’ of the presence of the particle

with no need to account for the particle surface explicitly. One can then use a regular grid and, effectively,

remove the particle as an internal boundary from the computation. If the flow takes place in a regular

domain, this circumstance permits the use of highly efficient direct solvers for the pressure Poisson equa-

tion. Here we will describe two implementations of this idea and, in the last section, we briefly indicate how

the same approach may be extended to particles with an arbitrary shape.

The most useful feature of the method is the fact that, for a given computational domain, the compu-

tation time is only weakly dependent on the total number of particles, which permits relatively large
computations to be carried out with relatively modest computational resources. Additionally, unlike other

methods, the no-slip condition at the particle surface is enforced exactly and, as the number of degrees of

freedom per particle is increased, the error decreases faster than algebraically. A preliminary analysis of the

convergence properties of this approach is presented in [4] (see also [5]).

The direct numerical simulation of disperse particle flows is an important topic in contemporary mul-

tiphase flow research due to its relevance for a variety of applications such as slurries, fluidized beds,

pneumatic transport, suspensions, and many other industrial and environmental problems. In a large

fraction of this work, the dispersed particles are approximated as points (see, e.g. [6–8]), a procedure that is
only valid for small particles at dilute concentrations. Methods for finite-size particles are less well de-

veloped and, in general, require considerable computational resources. Some recent examples include [9–

17]. An alternative approach, based on the lattice Boltzmann method, has also been developed in the last

few years [18,19].

2. Reduction to the rest frame

As will be clear in the following, the method requires the consideration of the flow in the neighborhood

of each particle separately. Let U be the flow velocity in the inertial frame and w, X the translational and

angular velocity of a particle. The first step is to express the Navier–Stokes equations in the particle rest

frame, where the flow velocity u is related to U by

U ¼ u þ w þ X � x; ð1Þ

in which x is the position relative to the particle center. In this frame, we have

r � u ¼ 0; ð2Þ

q
ou

ot

�
þ u � rð Þu þ 2X � u

�
¼ �rp þ lr2u þ qg � q _ww

�
þ _XX � x þ X � Xð � xÞ

�
; ð3Þ

with the boundary condition

u ¼ 0 ð4Þ

on the particle surface. In (3) q and l are the fluid density and viscosity, p is the pressure, and g the body

force; dots denote Lagrangian time derivatives following the particle.
We now let

u ¼ v þ ~uu; p ¼ 1
2
q Xð � xÞ2 � q _wwð � gÞ � x þ qþ ~pp; ð5Þ

where the fields ðv; qÞ are chosen to satisfy

0 ¼ �rqþ lr2v � q _XX � x; r � v ¼ 0; ð6Þ
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with

v ¼ 0 ð7Þ
on the particle surface. As a consequence, the new fields ð~uu; ~ppÞ satisfy

q
ou

ot

�
þ u � rð Þu þ 2X � u

�
¼ �r~pp þ lr2~uu; ð8Þ

with

~uu ¼ 0 ð9Þ
on the particle surface. Since u ¼ 0 on the particle surface, by continuity, it will be small near the particle

and, therefore, there is a region adjacent to the particle where the left-hand side of (8) is small. Thus, locally,

ð~uu; ~ppÞ approximately satisfy

�r~pp þ lr2~uu ¼ 0; r � ~uu ¼ 0; ð10Þ

i.e., the Stokes equations. Naturally, the extent of the spatial region where (10) are a good approximation to

(8) becomes smaller and smaller as the Reynolds number increases but, for any finite Reynolds number,

there is a non-vanishing region where (10) are applicable with but a small error.

The general solution of the Stokes problem (10) can be expressed analytically in terms of coefficients that

depend on the flow incident on the particle. We shall use this fact to transform the boundary condition at
the particle surface into a relation among the values of the flow fields at the neighboring grid points, as will

be described in Sections 4 and 7.

The solution of the auxiliary problem (6) is readily found in both two and three dimensions; in the

present two-dimensional case, it is

v ¼ r4 � a4

8mr2
_XX � x; q ¼ 0: ð11Þ

From a knowledge of ~uu and ~pp, the force ~FF and couple ~LL acting per unit length on the particle can be
calculated from the usual definitions:

~FF ¼
Z

dS
�
� ~ppn þ ~ss � n

�
; ~LL ¼

Z
dSx �

�
� ~ppn þ ~ss � n

�
; ð12Þ

in which the integration is over the particle surface, n is the unit outward normal, and ~ss the viscous stress

tensor associated with ~uu. These quantities are related to the force F and couple L in terms of the original

variables by

F ¼ qv _wwð � gÞ þ ~FF; L ¼ ~LL þ qva2 _XX; ð13Þ

where v ¼ pa2 is the volume (area) of a particle of radius a. In the examples shown in this paper, the

translational and angular velocity of the particles are specified. In the more general case, these quantities

are to be found from the standard equations of rigid-body mechanics; several examples of this type are

given in [5].

3. General solution of the two-dimensional stokes equations

The general solution of the Stokes equations (10) subject to the boundary condition (9) is readily found

by introducing a dimensionless stream function w, defined so that ~uu ¼ mr� ðwkÞ (with m the kinematic
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viscosity and k the unit vector normal to the flow plane), and using a Fourier series representation in the

angular variable; it is

w ¼ s2
�

� 2 log s� 1
�
A0 þ

X1
n¼1

wn An cos nh
�h

þ ~AAn sin nh
�
þ ~wwn Bn cos nh

�
þ ~BBn sin nh

�i
; ð14Þ

where

w1 ¼ s3 � 2sþ 1

s
; ~ww1 ¼ s log s� s

2
þ 1

2s
; ð15Þ

wn ¼ nsnþ2 � nð þ 1Þsn þ s�n; ~wwn ¼ ns�nþ2 � ðn� 1Þs�n � sn; ð16Þ

with s ¼ r=a. An important point to stress is that, thanks to the as yet undetermined coefficients
An;Bn; ~AAn; ~BBn, the stream function (14) is able to accommodate any (locally Stokes) flow in the neighbor-

hood of the particle. Thus, no assumptions or restrictions about this flow have been introduced. As ex-

plained below, these coefficients are determined iteratively by matching the velocity field given by (14) to the

numerically computed Navier–Stokes flow away from the particle.

The corresponding pressure field is

~pp ¼ p0 þ
lm
a2

8s
�(
� A1 sin h þ ~AA1 cos h

�
þ 2

s
B1 sin h
�

� ~BB1 cos h
�

þ
X1
n¼2

4n nð
h

þ 1Þsn
�
� An sin nh þ ~AAn cos nh

�
þ 4n nð � 1Þs�n ~BBn cos nh

�
� Bn sin nh

�i)
; ð17Þ

where p0 is a constant, different for each particle, and the vorticity field

x ¼ m
a2

(
� 4A0 � 8s A1 cos h

�
þ ~AA1 sin h

�
� 2

s
B1 cos h
�

þ ~BB1 sin h
�

�
X1
n¼2

4nðn
h

þ 1Þsn An cos nh
�

þ ~AAn sin nh
�
þ 4nð � nþ 1Þs�n Bn cos nh

�
þ ~BBn sin nh

�i)
: ð18Þ

The contributions to the hydrodynamic force and couple per unit length on the cylinder given by (14) are

~FFx ¼ 4p
lm
a

~BB1; ~FFy ¼ �4p
lm
a
B1; ~LL ¼ �8plmA0: ð19Þ

If the previous expansions are truncated to the first term, the present approach might appear to have

some similarity with the force-coupling method of Maxey and Patel [16]. Actually, even with this severe

truncation, the two methods are different. As can be seen in Fig. 1 of [16], very near a sedimenting

particle, that approach produces an error while ours is capable of reproducing the exact result. Fur-

thermore, in Maxey and Patel�s method, the no-slip boundary condition at the particle surface is not

exactly satisfied.
Our approach shares with the so-called CHIMERA method (see, e.g. [20,21]), the matching of solu-

tion(s) valid near the particle(s) with a ‘‘global’’ solution valid elsewhere in the computational domain.

However, our use of an analytical form for the local solution(s) replaces the low-order (algebraic) pro-

jection errors between the local and global grids which affect the CHIMERA method by high-order

(spectral) ones.
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4. Two-cage implementation

The general idea described in Section 1 can now be made more precise. We describe two different im-

plementations, one using only the velocity field, the other (in Section 7) using velocity, pressure, and

vorticity.

The entire domain, irrespective of the presence of the bodies, is covered by a regular finite-difference grid.

Each cylinder is surrounded by two nested ‘‘cages’’ of grid points constructed so as to be near the body

surface; an example is shown in Fig. 1. Here, the nodes of the outer cage (dots) are located at cell centers
and the arrows are the velocity points on the inner cage.

The procedure can be summarized as follows. Suppose that a provisional estimate of the velocity field at

the grid nodes is available (this could be, e.g., the velocity field at the previous time step). Then:

1. For each particle, let J ¼ 1; 2; . . . ;No be the nodes of the outer cage. Match the analytic expressions

for the velocity obtained from the stream function (14) with the estimated velocity field at these grid

nodes using (1):

uJ ¼ UJ � w � X � xJ : ð20Þ

This system of equations is solved for the coefficients An;Bn; ~AAn; ~BBn of the particle. In principle, the
maximum number of coefficients that can be determined in this way equals the number of cage nodes,

although in practice we use fewer and solve (20) in a least square sense;

2. Using the values of the coefficients determined at the previous step, compute from the analytic formu-

lae the velocity field at the points K ¼ 1; 2; . . . ;Ni of the inner cage (Fig. 1) surrounding each particle:

UK ¼ uK þ w þ X � xK : ð21Þ

Fig. 1. An example of the inner and outer cages for a grid with 8 mesh lengths per cylinder diameter. The nodes of the outer cage used

to calculate the coefficients of (14) are located at cell centers; the arrows are the velocity points on the inner cage; the crosses mark the

points closest to the particle where the pressure Poisson equation is solved.
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3. Solve the full Navier–Stokes equations on the finite-difference grid imposing this velocity field as

boundary condition on the inner cage nodes of each particle.

4. Evaluate this updated velocity field at the nodes of the outer cage of each particle and return to step 1,

repeating the cycle until convergence.
As will be explained in the following section, in executing step 3, it is efficient to solve for the flow field over

the entire grid, disregarding the presence of the particles. The velocity field outside the inner cages is the one

that is desired. The field inside the inner cages is the correct solution of another flow problem, in which the

flow is driven by the imposed velocity on the cage nodes: this solution is not unphysical – it is simply ir-

relevant for the purposes of the calculation and can be disregarded. The final flow field is given by the finite-

difference solution outside the inner cages, and by the analytic representation in the thin region between

each particle and the surrounding inner cage. It should be stressed that the solution procedure is devised in

such a way that, other than for satisfying a common velocity boundary conditions at the cage nodes, the
inner and outer solutions are unrelated, so that any �contamination� of the latter by the former is avoided.

In particular, there is no relation satisfied by the stresses across the cage surface.

A possible criticism of the method is its reliance on an approximate solution in the fluid regions between

each particle and the surrounding outer cage. The accuracy can be improved by refining the grid, which has

the effect of putting the cage nodes closer and closer to the particle surface. Another possibility (which we

have not yet explored) would be to improve on the Stokes flow solution by approximating the solution of

the full nonlinear equation (8) by a regular perturbation expansion. It may be noted, however, that in

practice some control of the error is built into the procedure, as convergence requires that the flow be
described by the same set of coefficients ðAk;BkÞ on both the inner and outer cages of each particle. This

requirement would not be satisfied in the presence of strong nonlinear effects which are not accounted for in

the analytic solution (14).

A rough idea of the grid size D necessary for a good numerical accuracy may be found by noting that the

grid points should be inside the boundary layer for the Stokes approximation to be valid. If the boundary

layer thickness is estimated as a=
ffiffiffiffiffiffi
Re

p
, where Re is the Reynolds number expressed in terms of a charac-

teristic velocity and the cylinder diameter, we thus have that ND ¼ 2a=D should be sufficiently larger thanffiffiffiffiffiffi
Re

p
. This limit is not different from that applicable to a standard finite-difference calculation.

5. Miscellaneous details

While the general idea of the method is sufficiently clear from the description of the previous section, its

successful implementation hinges on several details, to which we now turn.

5.1. Flow solver

As described in the previous section, each computational cycle consists of two steps, an inner one that

updates the coefficients and an outer one that calculates the flow field for a given set of coefficients.

The outer step is executed by a standard finite-difference MAC discretization on a staggered grid and a

suitably modified first-order accurate projection method. The time-discretized Navier–Stokes equation is
written as

Unþ1 � Un

Dt
¼ KðUnÞ � 1

q
rpnþ1; ð22Þ

where K stands for all the terms that need not be shown explicitly; the superscripts n, nþ 1 denote time

levels and we assume that everything is known at time level n. In the usual approach, one defines an
auxiliary field U� such that, at the interior nodes,
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U� � Un

Dt
¼ KðUnÞ; ð23Þ

while

U� ¼ Unþ1 ð24Þ

on the boundaries. With U� thus defined, the momentum equation (22) is reduced to

Unþ1 � U�

Dt
¼ � 1

q
rpnþ1; ð25Þ

which will determine Unþ1 once pnþ1 is known. To obtain this latter quantity, one takes the divergence of

(25), recalling the equation of continuity, to find a Poisson equation

r2pnþ1 ¼ q
Dt

r � U�; ð26Þ

to be solved subject to homogeneous Neumann conditions on the boundary. Here, we cannot execute the
step (24) because Unþ1 at the cage boundary must be calculated from the stream function (14), the coef-

ficients ðAk;Bk; ~AAk; ~BBkÞ of which are still unknown. Thus, we proceed iteratively as follows.

Denote by j be the index of this iteration, and write, for brevity, Uj, pj, and Aj in place of Unþ1;j, pnþ1;j,

and ðAj
k ;B

j
k ;

~AAj
k ;

~BBj
k Þ. As in the usual method, we define Uj

� from (23) and, since approximate values Aj�1 of

the coefficients are available, in place of (24), we use these values in (14) to set Uj
� on the cage nodes (see

below for a further note on this step). Before taking the divergence, we multiply (25) by the characteristic

function v of the domain external to the inner cages. Near the generic particle a we may take v ¼ HðSaÞ,
where H is the Heaviside distribution and SaðxÞ ¼ 0 is the inner cage surrounding particle a, with Sa > 0
outside the cage. The result is

Hr2pjþ1 þrH � rpjþ1 ¼ q
Dt

Hr � Uj
�

�
þ Unþ1
�

� Uj
�
�
� rH

�
: ð27Þ

Thanks to the factor rH , the last term of the equation only contributes on the cage where, at convergence,

Unþ1 ¼ U� as shown by (24). Thus, we drop this term and further approximate (27) by evaluating the

second term at iteration level j rather than j þ 1

Hr2pjþ1 ¼ q
Dt

Hr � Uj
� � rH � rpj: ð28Þ

The solution of this equation gives a new estimate pjþ1 of pnþ1, which enables us to calculate Ujþ1 from (25),

from which new coefficients Ajþ1 can be found by matching on the outer cage, and so on.

If (28) were solved as it stands, it would be necessary to implement a procedure that skips the nodes

inside the inner cage, which would prevent the use of a fast solver. Thus, it proves convenient to add to (28)

the divergence of the momentum equation written for a hypothetical fluid filling the inner cage, multiplied

by ð1� HÞ. The result is

r2pjþ1 ¼ q
Dt

r � Uj
� � rH � rpj; ð29Þ

which, after suitable discretization, can be solved over the entire domain disregarding the presence of cages

and bodies. The validity of this procedure may be better illustrated by considering the discretized version

of this equation, which is found by integration over a pressure cell. Consider, for example, the ði; jÞ cell
shown in Fig. 2. In this case, writing explicitly only the terms needed to explain this point, we have from

(29):
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1

Dx

pjþ1
iþ1;j � pjþ1

i;j

Dx

 
�
pjþ1
i;j � pjþ1

i�1;j

Dx

!
þ d2pjþ1

dy2

� �
i;j

¼ q
Dt

r � Uj
�

� �
i;j
�
pj
i;j � pj

i�1;j

Dx2
: ð30Þ

As the iteration converges, the last term on the right-hand side will cancel the second term on the left-hand

side, which is equivalent to solving the Poisson equation with a homogeneous Neumann boundary con-

dition as in the standard procedure (see, e.g. [22]); this same procedure is applied at all the points marked by
crosses in Fig. 1.

A steady-state flow may be considered as the limit of a time-dependent one as t ! 1 but, if the transient

is not of interest, the previous algorithm can be accelerated by avoiding to bring the j-iteration to con-

vergence. For example, for the simulation of flow past 1024 cylinders described below, we only took 3–5

iterations as opposed to the 10 or more that are typically necessary to accurately compute time-dependent

problems. We found that the error decreases at each time step and becomes sufficiently small when the

steady regime is attained.

5.2. Matching

According to step 1 of the procedure described in Section 4, once ujþ1 has been determined, it is nec-

essary to update the coefficients ðAk;Bk; ~AAk; ~BBkÞ. For this purpose, we start by calculating, from the
Cartesian components of ujþ1 on the outer cage, the radial and tangential components ur and uh with

respect to a temporary origin placed at the particle center. Since the Cartesian components are defined at

cell edges, prior to this step we calculate them at cell centers by averaging. Then, the summation in (14) is

truncated to a finite value Nc, velocity components are calculated, and equated to the values of ujþ1 at cell

centers according to (20). This step involves solving a linear system and, in principle, one could retain as

many coefficients as there are cells around the outer cage. In practice, however, on a finite-difference dis-

cretization with cells of side D, the shortest feature that can be resolved has a length scale 
 2D so that,

retaining modes with a shorter wavelength, would contaminate the calculation with aliasing errors rather

Fig. 2. Situation to which the numerical discretization (30) of the pressure equation (29) refers.
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than increase accuracy. Truncating the summation in (14) at Nc is equivalent to allowing a shortest

wavelength of the order of 2a=Nc. Thus, we expect that a near-optimal choice would be 2a=Nc ’ 2D or

Nc ’ 1
2
ND, where ND ¼ 2a=D is the number of mesh lengths per diameter. Since the number of available grid

points is of the order of 2pa=D ’ 6ND, and the number of coefficients ’ 4Nc, in a typical calculation there

are about three times as many grid points (each one with two pieces of data, ur and uh) as coefficients. The

system determining the coefficients has therefore a rectangular matrix, and we solve it by the Singular Value

Decomposition algorithm, which is equivalent to a least-squares procedure when all singular values are

retained (see, e.g. [23,24]).
It is apparent that the accuracy of the method can be increased arbitrarily by increasing the number of

nodes (with the effect, among others, of reducing the extent of the region where applicability of the Stokes

equations is assumed) and the number of coefficients in the exact solution. On the other hand, in some

applications, it might be useful to use a relatively small number of nodes and coefficients while greatly

increasing the number of particles. Thus, the method permits to shift the balance between accuracy and

number of particles according to need. It should also be noted that, for a smooth velocity field, the analytic

expansion (14) converges faster than algebraically and, therefore, the present method makes a very efficient

use of the degrees of freedom retained for each particle.
Another significant advantage is that the force and torque on each particle are found directly once the

low-order coefficients A0;B1; ~BB1 are known. This avoids the difficulty often encountered with other methods

which require high-order extrapolations to obtain the stress distribution on the particles.

5.3. Cage

Fig. 1 shows an example of the inner and outer cages for a situation in which the cylinder center co-

incides with a cell center and there are eight mesh lengths per cylinder diameter. The matching of velocities

on the outer cage is effected at cell centers. The arrows indicate the positions where the velocity boundary

conditions are imposed on the inner cage. It will be noted that some of these points fall inside the particle,

but this does not create difficulties – practical or conceptual – as, in principle, the function defined by (14) is

defined for both r > a and r < a as long as r 6¼ 0.
In a more general situation in which the cylinder center does not coincide with a cell center, the cages are

constructed as follows. A circle centered at the cylinder center, with radius aþ D (where D is the mesh

spacing), is drawn, and the pressure points (cell centers) falling between this circle and the cylinder surface

are used to build the inner cage. With this construction, the pressure points are always outside the particle.

The outer cage is constructed by taking the pressure points of the inner cage and moving outward by one

cell; this process results in an outer cage that is, at most, 2 mesh sizes away from the cylinder surface.

6. Some examples

We now present some results obtained by the method described before. We first illustrate its accuracy by

comparison with the results for flow past a single cylinder of [25] (see also [26]). Then we consider the flow

past many cylinders up to 1024.

6.1. Flow past a single cylinder

Table 1 shows, for different Reynolds numbers Re ¼ 2aU=m, a comparison of the drag coefficient

CD ¼ FD=qU 2a with different discretizations (expressed in terms of ND ¼ 2a=D, the ratio of cylinder di-

ameter to mesh size) and different truncations of the analytical solution (14), expressed in terms of Nc, the

order of the highest Fourier mode retained (recall that the total number of coefficients is 4Nc þ 1).
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In these calculations the domain was a square with a side equal to 40 cylinder diameters; a constant

velocity was imposed at the inlet and on the lateral boundaries, and free outflow conditions at the outlet.
For the simulation with Re ¼ 10 or larger the cylinder was centered 10 diameters downstream from the

inlet. If this same location was used for Re ¼ 5, the calculated CD was in error by nearly 5%; by placing the

cylinder at the center of the domain, instead, we find the results shown in the table which, in the best case

presented (ND ¼ 8), differs by less than 0.2% from those of [25].

In Table 1 we also compare the calculated wake length (measured in units of the cylinder radius) for

Re ¼ 20 and 40; the agreement is excellent, which suggests that the flow field is as well captured as the force

on the cylinder. For Re ¼ 13 and 26 (with ND ¼ 8, Nc ¼ 4) our computed wake lengths are 0.875 and 2.625.

The corresponding experimental values, as estimated from the photographs in [27], are 0.88 and 2.4, re-
spectively.

6.2. Randomly distributed cylinders in a periodic system

We now consider simulations of the steady flow through a bed of many cylinders randomly distributed in

a square cell at the edges of which periodic boundary conditions are applied. This is a standard device to

simulate the flow through a large cylinder bed which, physically, might represent the flow through a fibrous

material (see, e.g. [28–31]). The flow is driven by an imposed pressure gradient P by writing, in the Navier–

Stokes equation, rp ¼ P þrp̂p, where p̂p is subjected to periodicity boundary conditions. For most of the

simulations we use a discretization with eight meshes per cylinder diameter (ND ¼ 8) and Nc ¼ 4.

A picture of the flow through a random distribution of 25 cylinders occupying a volume (area) fraction

of 20% is shown in Fig. 3; the Reynolds number defined in terms of the average velocity through the bed
and cylinder diameter is about 20. The phenomenon of channeling along particular flow paths is clearly

visible here. By taking ensemble averages of results of this type one can calculate the average flow con-

ductance through a bank of cylinders. As an example we show in Fig. 4 the running average of the Rey-

nolds number based on the average velocity over a small ensemble of 10 realizations for 25 cylinders and 3

Table 1

Some numerical results for a single cylinder with the two-cage implementation and comparison with [25]

Re ND Nc CD Wake length

Present Ref. [25] Present Ref. [25]

5 8 4 4.159 4.116

6 4.123

16 4 4.310

8 4.270

10 8 4 2.971 2.846 0.375 0.53

6 2.981

16 4 2.961 0.49

8 2.920

20 8 4 2.095 2.045 1.87 1.88

16 4 2.160 1.88

6 2.120

8 2.105 1.88 1.88

40 8 4 1.457 1.522 4.59 4.69

5 1.689

6 1.687

16 4 1.607 4.60

8 1.587 4.60
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for 1024 cylinders, again for a volume fraction of 20%, and for a dimensionless pressure gradient

a3P=ðqm2Þ ¼ 50. As expected, the result with a large number of cylinders settles down to the ensemble

average very quickly with a much smaller standard deviation.

Next, we picked one particular realization of the 25-cylinder ensemble (the same one shown in Fig. 3)

and studied the relation between the average force on the cylinders and the flow rate which, according to
the well-known Ergun formula, should have the form

FD
lU

¼ c1 þ c2Re; ð31Þ

Fig. 3. Periodic flow over 25 randomly oriented cylinders occupying an area fraction of 20%; the Reynolds number based on the

average velocity is about 20 (two-cage implementation).

Fig. 4. Running average of the pressure-driven mean velocity through a bed of cylinders with a volume (area) fraction of 20%. Circles:

25 cylinders in the unit cell; crosses: 1024 cylinders; in the latter case, only three configurations were used. The imposed dimensionless

pressure gradient is a3P=ðqm2Þ ¼ 50.
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in which c1; c2 are constants dependent on the volume fraction. Ref. [32] shows by a lattice–Boltzmann
calculation that this relation holds for ReP 5 while, for smaller Reynolds numbers, a quadratic dependence

of the second term on Re is a better approximation. The results of the present simulations, shown in Fig. 5

for volume fractions of 20%, 12%, and 8% (the latter two obtained by randomly removing 10 and then 5

cylinders from the domain), support these conclusions; the solid line is the result of [32]. (Note that here,

and only here, following [32], the Reynolds number is expressed in terms of the mean, rather than the

superficial velocity; the former equals the volume fraction times the latter.)

A useful check of the numerical accuracy of the method can be done here because, in view of the use of a

periodic domain, the sum of all the hydrodynamic forces acting on the cylinders must equal the total
hydrodynamic force on the boundary of the computational domain: in other words, the force exerted by the

pressure gradient must equal the total force on the cylinders. A comparison between these two quantities is

shown in Table 2, the last column of which also gives the mean dimensionless force per unit length.

It can be seen in the table that, for very small pressure gradients, there is an excellent agreement, which

however deteriorates as Re increases reaching about 3% for Re ’ 24. According to the estimate given at the

end of Section 4, one may expect that a discretization with a certain ND would be adequate up to Re ’ 1
4
N 2

D

which, in the present case, would be 64=4 ¼ 16. Thus, the deviation encountered in the table at the larger

Fig. 5. Normalized mean force per unit cylinder length vs. Reynolds number (based on the mean, rather than the superficial velocity)

for the pressure-driven flow through a cylinder bed. The lines correspond to different volume fractions; the thick line is the result of

[32].

Table 2

Comparison between the imposed pressure gradient and the total drag force for flow past a bed of 25 cylinders with a 20% volume

(area) fraction; L is the cell size (two-cage implementation)

Re a3P=ðqm2Þ ða3=qm2L2Þ
P

FD % Difference F D=lU

0.086 0.1 0.1 0.00 37.29

0.85 1 1.0 0.00 37.42

1.69 2 2.001 0.00 37.85

4.02 5 5.017 0.34 39.81

7.28 10 10.075 0.75 43.9

12.57 20 20.13 0.65 50.778

24.39 50 48.6 2.80 65.71

38.76 100 90.1 9.90 82.53

59.54 200 159.2 20.40 107.53
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Reynolds numbers is not surprising. For example, if the calculation with a3P=ðqm2Þ ¼ 100 is repeated with

ND ¼ 16 and Nc ¼ 8, one finds an error of 1.2% in place of nearly 10% as in the table.

In Section 5.2 we presented an estimate of the optimal number of coefficients that should be retained for

a given discretization of the domain. Table 3 illustrates the effect of changing the number of coefficients for

a discretization with 16 meshes per diameter and Re ’ 32. The results support the estimate Nc 
 ð1=2ÞND

given before.

As a last example, we show in Fig. 6 transient results for the flow past the 25 cylinders of Fig. 3. Here the

flow starts from rest and, at time 0, a pressure gradient a3P=ðqm2Þ ¼ 50 is imposed.

6.3. CPU time

An interesting feature of the present scheme is its computational efficiency. For the 25 cylinder simu-
lations described before, typical computation times to steady state were about 10 min on a 600 MHz

Pentium III PC. For the 1024 cylinder simulation at the same volume fraction of 20% (and, therefore, on a

much bigger domain), on the same PC, the time required was typically of the order of 6 h.

Fig. 7 illustrates the increase in computation time as the number of cylinders is increased. Here, we have

started with a domain large enough to contain 1024 cylinders with a volume (area) fraction of 20%, and we

have then gradually removed cylinders at random maintaining the same computational domain discretized

with 512� 512 nodes with 8 mesh lengths per cylinder diameter. Since the complexity of the flow structure

(which affects the convergence rate) increases with the Reynolds number, in order to have similar conditions

Table 3

Effect of increasing the number of coefficients for the flow past 25 cylinders shown in Fig. 3 with a3P=ðqm2Þ ¼ 100 (Re ’ 38:76)

Nc % Error

2 11.4

4 2.6

6 1.0

8 1.2

10 5.3

12 9.6

13 13.2

14 No convergence

The optimal value estimated in Section 5.2 is Nc 
 1
2
ND which equals 8 in this case.

Fig. 6. Mean velocity vs. time for the flow past the 25 cylinders of Fig. 3 for an impulsively applied pressure gradient a3P=ðqm2Þ ¼ 50.
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in each case, the imposed pressure gradient was adjusted so that the mean force ða3F D=qm2L2Þ per cylinder
was kept constant and equal to the same value calculated for 1024 cylinders with Re ¼ 5:6. This particular
way of performing the comparison had the consequence that the Reynolds number varied with the number

of cylinders. Furthermore, in order to have a more meaningful comparison, for all cases we executed 3

pressure iterations and 5 coefficient iterations. It may be noted that the number of iterations necessary for

convergence to steady state increases as the number of cylinders decreases because the flow becomes less
constrained. Thus, it may be said that the result presented in this figure is perhaps biased in favor of the

smaller computations.

The striking feature of this figure is that, as the number of cylinders is increased, the computational time

increases only very slightly because most of the CPU time is spent solving the pressure Poisson equation.

Adding particles increases the number of linear systems that must be solved to calculate the coefficients of

the analytical solution, but since these are small their computational cost is limited. Thus, although in

principle the computational time asymptotically must grow linearly with the number of linear systems

determining the coefficients – and hence with the number of particles – in practice a large number of
particles requires a large computational domain, and the cost of the finite-difference flow solver on such a

domain is superior to that of solving for the coefficients. Hence we may say that, in practice, for a given

computational domain, the total computational cost is only weakly dependent on the number of particles.

7. Single-cage implementation

An attractive variant of the general idea described before is based on the use of a single cage, with the
coefficients computed from the pressure and vorticity distributions, rather than velocity on the outer cage as

in Section 4. As shown in [5], this formulation has several advantages. In the first place, it requires validity

of the Stokes equations only between the particle surface and the single cage, rather than all the way to the

outer cage: this benefits accuracy and permits the use of a somewhat coarser discretization. Secondly, since
~uu vanishes on the particle surface, there is a �signal-to-noise� problem if this quantity is used, as in the

previous method, to calculate the coefficients: vorticity and pressure, on the other hand, are finite near the

particle. Thirdly, the cage can be placed inside the particle, with the advantage that particle contact and

collision can be accounted for with greater fidelity; an example is given in [5]. As before, we use the SVD
algorithm to solve for the coefficients. We have checked that the typical residual error with which the

system is satisfied is a fraction of 1%.

Fig. 7. CPU time on a 600 MHz Pentium III PC per time step vs. number of cylinders keeping the total number of iterations constant.
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Figs. 8 and 9 show typical examples of the cages that we use. Here the crosses are the pressure nodes, the

diamonds the vorticity nodes, and the arrows the velocity nodes; the vorticity at the node ði; jÞ is calculated
from

xij ¼
ov
ox

�
� ou

oy

�
i;j

’ viþ1;j � vi;j
Dx

� ui;jþ1 � ui;j
Dy

: ð32Þ

In the first figure the pressure nodes are all outside the particle, whereas in the second one they are just

inside. Convergence is more robust when the first cage is used, but the second one is preferable when there

are many particles as it allows them to come closer to one another. At present the reasons for the different

numerical behavior of the two cages are not fully understood.

Tables 4 and 5 show some results to be compared with those presented earlier in Tables 1 and 2, re-

spectively; here the cage is that of Fig. 8 and, for the case of Table 5, 10 mesh spacings per cylinder diameter
were used. The results are essentially the same as before.

We next compare with some results for the flow induced by a line of cylinders held between two parallel

walls moving with velocity 2aU=m ¼ 1 as obtained by the finite-element calculation of [33] and the lattice–

Boltzmann calculation of [34]. The cylinders are spaced by a distance L, D denotes the spacing between the

walls, and fc ¼ jFj=2pqU 2a, with F the total fluid-dynamic force. Table 6 illustrates the near-perfect

agreement among the three computations. Here the column labelled a=Dx refers to the computations of

[34,33]; the third column denotes the conditions for the present computation. Note that in the last two

cases our results have been obtained with 1/2 and 1/3 of the nodes of the lattice–Boltzmann calculation,
respectively. The last line in Table 6 is for the reciprocal case in which the cylinders move between sta-

tionary walls. The results given by the present method in the two cases are virtually indistinguishable. The

numbers shown have been obtained with the cage of Fig. 9; use of the cage of Fig. 8 gave differences of 1%

or less.

Fig. 8. One of the cages used in the one-cage formulation; crosses: pressure nodes; diamonds: vorticity nodes; arrows: velocity nodes.
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As a final example, we study the uniform flow past a cylinder at a Reynolds number of 60. We performed

two different calculations with computational domains 20a� 60a and 40a� 100a with periodic boundary

conditions at the upper and lower boundaries, a prescribed velocity at the inlet, and free outflow conditions

Fig. 9. Another cage for the one-cage formulation; crosses: pressure nodes; diamonds: vorticity nodes; arrows: velocity nodes.

Table 4

Some numerical results for a single cylinder with the single-cage implementation and comparison with [25]

Re ND Nc CD Wake length

Present Ref. [25] Present Ref. [25]

5 16 4 4.172 4.116

5 16 8 4.210

20 16 6 2.139 2.045 1.88 1.88

20 16 8 2.140 1.88

40 8 4 1.613 1.522 4.38 4.69

40 16 4 1.595 4.58

40 16 8 1.597 4.57

Table 5

Comparison between the imposed pressure gradient and the total drag force for flow past a bed of 25 cylinders with a 20% volume

(area) fraction; L is the cell size (single-cage implementation with 10 mesh spacings per cylinder diameter)

Re a3P=ðqm2Þ ða3=qm2L2Þ
P

FD % Difference F D=lU

0.85 1.0 1.00 0.07 37.71

1.68 2.0 2.00 0.07 38.20

3.96 5.0 5.00 0.07 40.39

7.21 10.0 10.01 0.06 44.40

12.48 20.0 20.00 0.02 51.29

23.52 50.0 49.80 0.40 67.74
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at the right boundary. We used 16 nodes per cylinder, and a dimensionless time step mDt=a2 ¼ 0:001. For
both calculations, steady conditions were reached at about mt=a2 ¼ 12. Fig. 10 shows the instantaneous

vorticity contours for the first calculation. We observe the expected self-excited wake oscillations and

periodic vortex shedding. Fig. 11 shows the dimensionless lift force on the cylinder, which oscillates very

regularly with time. The Strouhal number is 0.153, while the calculation with the bigger domain gives 0.148.

These results are in good agreement with the experimental value of 0.135 [26].

Table 6

Comparison among different calculations of the force on a line of cylinders between two walls moving with a relative velocity

2aU=m ¼ 1

L=D a=Dx Nodes per cylinder fc

Present Ref. [34] Ref. [33]

11.8 10.8 10 1.035 1.053 0.966

6.1 20.8 10 1.235 1.251 1.158

2.09 60.8 20 2.081 2.093 2.067

2.09 60.8 20 2.083 (fixed walls)

The present results have been obtained with the single-cage implementation of Section 7, the first three assuming fixed cylinders and

moving walls, the last one for moving cylinders between fixed walls as in [33,34].

Fig. 10. Instantaneous vorticity contours for the flow past a cylinder at Re ¼ 60.
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8. Conclusions

We have presented a new numerical method for the direct simulation of particle flows. We have focused

here on the two-dimensional case, but it is clear that a similar approach carries over to three dimensions;

the necessary computer code is currently being tested. The method has been shown to be accurate and

numerically efficient. In particular, as can be seen in Fig. 7, the computational time exhibits a very favorable

scaling with the number of particles, which makes the method suitable for simulations with many particles.

For example, we were able to solve the flow past 1024 cylinders in a few hours on a simple PC. Rather than

time, the main limitation stems from memory requirements, but these are not significantly different from

those that would limit a single-phase calculation at the same Reynolds number.
Another advantage of the approach is the accuracy with which the force and torque on the particles can

be computed, thanks to the spectral representation of the solution near the particles. The fast convergence

of this representations has also the effect that the degrees of freedom assigned to each particle – i.e., the

expansion coefficients – represent the effect of the local flow inhomogeneity in a very efficient (perhaps even

optimal) way. In particular, if desired, this circumstance permits relatively inexpensive, although still

reasonably accurate, simulations with many particles. Of course, like any other consistent numerical

method, by a sufficient refinement of the finite-difference grid and concomitant increase of the number of

coefficients retained per particle, an arbitrary accuracy can also be achieved.
The method has been demonstrated in a finite-difference context, but its extension to finite volume or

finite element flow solvers does not seem to present particular problems. It is also obvious that the pro-

cedure can be parallelized in a straightforward manner assigning one particle or group of particles to each

Fig. 11. Dimensionless lift force Fl=4pml (i.e., the coefficient B1 in Eq. (19)) for the flow past a cylinder at Re ¼ 60 shown in the

previous figure.
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processor, and using the same strategies as for single-phase computations to handle the rest of the com-

putation.

As apparent from the material presented in this paper, a limitation of our approach is the need for an

exact analytical solution of the Stokes equations, which only exists for a few body shapes. A way to

overcome this shortcoming would be to use a boundary-integral solution for the local Stokes problem;

other possibilities are the use of a body-fitted, or finite-element, mesh near the body which would match a

regular grid on the rest of the domain.
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